137 research outputs found

    Editorial Focus: An ACE Inhibitor Improves Vascular Outcomes in a PKD Model

    Get PDF
    Cardiovascular complications are the most common cause of death in patients with polycystic kidney disease (PKD). Within the context of clinical practice, two possible theories have been reviewed that could help describe the pathogenesis of vascular complications in PKD (7)

    Hypertension in Autosomal Dominant Polycystic Kidney Disease: A Clinical and Basic Science Perspective

    Get PDF
    Cardiovascular complications are major causes of morbidity and mortality in patients with autosomal dominant polycystic kidney disease (ADPKD). In particular, hypertension is insidious and remains a continuous problem that evolves during the course of the disease. Hypertension in ADPKD has been associated with abnormality in the renin-angiotensin-aldosterone system (RAAS). Early vascular changes have also been reported in young ADPKD patients. In addition, the cellular functions of mechanosensory cilia within vascular system have emerged recently. The basic and clinical perspectives of RAAS, vascular remodeling and sensory cilia are reviewed with regard to hypertension in ADPK

    The Effects of Sex Hormones on the Size of Intestinal Lipoproteins

    Get PDF
    Larger intestinal lipoproteins are more likely to be retained longer in the intestinal wall, allowing more time for their fat to be hydrolyzed and subsequently taken up by the abdominal viscera. Since men generally accumulate more abdominal visceral fat than women, we sought to determine if males produce larger intestinal lipoproteins compared to females. Using the conscious lymph fistula mouse model, we discovered that the male mice indeed produced larger intestinal lipoproteins than the female mice when they were intraduodenally infused with lipid emulsion. We then employed our differentiated Caco-2 cell model with semipermeable membrane system to determine the effects of sex hormones on the size of intestinal lipoproteins. Lipoprotein size was quantitatively measured by calculating the ratio of triglycerides (TG)/Apolipoprotein B (ApoB) and by analyzing their transmission electron micrographs. Our studies showed that while there was no dose-dependent effect of estrogen and progesterone, testosterone significantly increased the size of lipoproteins. When these hormones were combined to resemble the physiological concentrations observed in males and the different ovarian cycle phases in premenopausal females, both the male and luteal groups had significantly larger lipoproteins than the ovulatory group; and the male group also had significantly larger lipoproteins than the follicular group. The ovulatory group secreted a significantly lower amount of TG than the male and luteal groups. ApoB was comparable among all these groups. These findings support our hypothesis that, through their testosterone effects, males are more likely to produce larger intestinal lipoproteins. Larger lipoproteins tend to remain longer in the intestinal wall and may facilitate fat uptake preferentially by the abdominal viscera. Our studies may partly explain why men are more prone to accumulating abdominal visceral fat, which is an independent predictor of mortality

    Interactions among Endothelial Nitric Oxide Synthase, Cardiovascular System, and Nociception during Physiological and Pathophysiological States

    Get PDF
    Nitric oxide synthase (NOS) plays important roles within the cardiovascular system in physiological states as well as in pathophysiologic and specific cardiovascular (CV) disease states, such as hypertension (HTN), arteriosclerosis, and cerebrovascular accidents. This review discusses the roles of the endothelial NOS (eNOS) and its effect on cardiovascular responses that are induced by nociceptive stimuli. The roles of eNOS enzyme in modulating CV functions while experiencing pain will be discussed. Nociception, otherwise known as the subjective experience of pain through sensory receptors, termed “nociceptors”, can be stimulated by various external or internal stimuli. In turn, events of various cascade pathways implicating eNOS contribute to a plethora of pathophysiological responses to the noxious pain stimuli. Nociception pathways involve various regions of the brain and spinal cord, including the dorsolateral periaqueductal gray matter (PAG), rostral ventrolateral medulla (RVLM), caudal ventrolateral medulla, and intermediolateral column of the spinal cord. These pathways can interrelate in nociceptive responses to pain stimuli. The alterations in CV responses that affect GABAergic and glutamatergic pathways will be discussed in relation to mechanical and thermal (heat and cold) stimuli. Overall, this paper will discuss the aggregate recent and past data regarding pain pathways and the CV system

    Endothelin

    Get PDF
    Endothelin-1 is the most potent vasoconstrictor agent currently identified, and it was originally isolated and characterized from the culture media of aortic endothelial cells. Two other isoforms, termed endothelin-2 and endothelin-3, were subsequently identified, along with structural homologues isolated from the venom of Actractapis eng-addensis known as the sarafotoxins. In this review, we will discuss the basic science of endothelins, endothelin-converting enzymes, and endothelin receptors. Only concise background information pertinent to clinical physician is provided. Next we will describe the pathophysiological roles of endothelin-1 in pulmonary arterial hypertension, heart failure, systemic hypertension, and female malignancies, with emphasis on ovarian cancer. The potential intervention with pharmacological therapeutics will be succinctly summarized to highlight the exciting pre-clinical and clinical studies within the endothelin field. Of note is the rapid development of selective endothelin receptor antagonists, which has led to an explosion of research in the field

    Polycystic Diseases in Visceral Organs

    Get PDF
    Primary cilia are nonmotile, microtubule-based, antenna-like organelles projecting from the apical surface of most mammalian cells. Elegant studies have established the importance of ciliary structure and function in signal transduction and the sensory roles of cilia in maintaining healthy cellular state. In particular, dysfunctional cilia have been implicated in a large number of diseases mainly characterized by the presence of fluid-filled cysts in various organs. Aside from polycystic kidney disease (PKD), however, the roles of cilia in polycystic liver disease (PLD), polycystic pancreas disease (PPD), and polycystic ovarian syndrome (PCOS) are still very vague. In addition, although gender and sex hormones are known to regulate cyst formation, their roles in regulating physiological functions of cilia need to be further explored

    Calcium-Mediated Mechanisms of Cystic Expansion

    Get PDF
    In this review, we will discuss several well-accepted signaling pathways toward calcium-mediated mechanisms of cystic expansion. The second messenger calcium ion has contributed to a vast diversity of signal transduction pathways. We will dissect calcium signaling as a possible mechanism that contributes to renal cyst formation. Because cytosolic calcium also regulates an array of signaling pathways, we will first discuss cilia-induced calcium fluxes, followed by Wnt signaling that has attributed to much-discussed planar cell polarity. We will then look at the relationship between cytosolic calcium and cAMP as one of the most important aspects of cyst progression. The signaling of cAMP on MAPK and mTOR will also be discussed. We infer that while cilia-induced calcium fluxes may be the initial signaling messenger for various cellular pathways, no single signaling mediator or pathway is implicated exclusively in the progression of the cystic expansion. This article is part of a Special Issue entitled: Polycystic Kidney Disease

    Ciliary Dysfunction in Polycystic Kidney Disease: An Emerging Model with Polarizing Potential

    Get PDF
    The majority of different cell types in the human body have a cilium, a thin rod-like structure of uniquely arranged microtubules that are encapsulated by the surface plasma membrane. The cilium originates from a basal body, a mature centriole that has migrated and docked to the cell surface. The non-motile cilia are microtubule-based organelles that are generally considered sensory structures. The purpose of this review is to discuss the practicality of the ciliary hypothesis as a unifying concept for polycystic kidney disease and to review current literature in the field of cilium biology, as it relates to mechanosensation and planar cell polarity. The polycystins and fibrocystin localization at the cilium and other subcellular localizations are discussed, followed by a hypothetical model for the cilium\u27s role in mechanosensing, planar cell polarity, and cystogenesis

    Primary Cilium-Dependent Signaling Mechanisms

    Get PDF
    Primary cilia are hair-like organelles and play crucial roles in vertebrate development, organogenesis, health, and many genetic disorders. A primary cilium is a mechano-sensory organelle that responds to mechanical stimuli in the micro-environment. A cilium is also a chemosensor that senses chemical signals surrounding a cell. The overall function of a cilium is therefore to act as a communication hub to transfer extracellular signals into intracellular responses. Although intracellular calcium has been one of the most studied signaling messengers that transmit extracellular signals into the cells, calcium signaling by various ion channels remains a topic of interest in the field. This may be due to a broad spectrum of cilia functions that are dependent on or independent of utilizing calcium as a second messenger. We therefore revisit and discuss the calcium-dependent and calcium-independent ciliary signaling pathways of Hedgehog, Wnt, PDGFR, Notch, TGF-β, mTOR, OFD1 autophagy, and other GPCR-associated signaling. All of these signaling pathways play crucial roles in various cellular processes, such as in organ and embryonic development, cardiac functioning, planar cell polarity, transactivation, differentiation, the cell cycle, apoptosis, tissue homeostasis, and the immune response

    Sensing a Sensor: Identifying the Mechanosensory Function of Primary Cilia

    Get PDF
    Over the past decade, primary cilia have emerged as the premier means by which cells sense and transduce mechanical stimuli. Primary cilia are sensory organelles that have been shown to be vitally involved in the mechanosensation of urine in the renal nephron, bile in the hepatic biliary system, digestive fluid in the pancreatic duct, dentin in dental pulp, lacunocanalicular fluid in bone and cartilage, and blood in vasculature. The prevalence of primary cilia among mammalian cell types is matched by the tremendously varied disease states caused by both structural and functional defects in cilia. In the process of delineating the mechanisms behind these disease states, calcium fluorimetry has been widely utilized as a means of quantifying ciliary function to both fluid flow and pharmacological agents. In this review, we will discuss the approaches used in associating calcium levels to cilia function
    corecore